Molecular identification and characterization of indigenous bacterial strains isolated from soils around some oil refineries in Iran

Document Type : Original Article


1 PhD Student, Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran

2 Associate Professor, Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran

3 Lecturer, Department of Microbiology, Islamic Azad University, Falavarjan Branch, Isfahan, Iran


One of the main causes of soil pollution is the release of crude oil into the environment. Indigenous microorganisms with the capability of biodegrading hydrocarbon components can be used to improve the efficiency of microbial bioremediation technology. Here, oil-contaminated soils were collected from five oil refineries (Abadan, Isfahan, Tehran, Tabriz and Shiraz) for screening and isolation of geographically adaptive indigenous oil-degrading bacteria. Bacterial colonies from oil-contaminated soil samples were isolated, which were able to grow in a medium containing crude oil, light, and heavy diesel, as a sole carbon source. Twelve strains were isolated, purified, and identified, using the 16S rRNA gene sequencing analysis. The isolates belonged to five species, including Achromobacter spanius, Klebsiella quasipneumoniae, Ochrobactrum intermedium, Citrobacter amalonaticus, Pseudomonas aeruginosa. These bacterial strains were capable of growing in media containing crude oil, light and heavy diesel for 7 to 9 days and had the potential for biosurfactant production. These bacterial strains can be considered as geographically adaptive bacteria, creating preliminary data for further research to utilize their bioremediation potential.


Abed, R. M. M., Al-Sabahi, J., Al-Maqrashi, F., Al-Habsi, A. & Al-Hinai, M. (2014). Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. International Biodeterioration & Biodegradation, 89, 58-66.
Bezza, F. A., Beukes, M. & Chirwa, E. M. N. (2015). Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochemistry, 50(11), 1911-1922.
Cappello, S., Santisi, S., Calogero, R., Hassanshahian, M. & Yakimov, M. M. (2012). Characterization of oil-degrading bacteria isolated from bilge water. Water, Air, & Soil Pollution, 223(6), 3219-3226.
Chandra, S., Sharma, R., Singh, K. & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63(2), 417-431.
Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2259-2261.
Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M. (2005). The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, 33, 294-296.
da Silva, L. J., Alves, F. C. & de França, F. P. (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Management & Research, 30(10), 1016-1030.
Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 2011(1), 941810.
Deng, M. C., Li, J., Liang, F. R., Yi, M., Xu, X. M., Yuan, J. P., Peng, J., Wu, C. F. & Wang, J. H. (2014). Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Marine Pollution Bulletin, 83, 79-86.
Guerra, A. B., Oliveira, J. S., Silva-Portela, R. C., Araujo, W., Carlos, A. C. & Vasconcelos, A. T. (2018). Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environmental Pollution, 235, 869-880.
Hassanshahian, M., Ahmadinejad, M., Tebyanian, H. & Kariminik, A. (2013). Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Marine Pollution Bulletin, 73(1), 300-305.
Hassanshahian, M., Emtiazi, G. & Cappello, S. (2012). Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 64(1), 7-12.
Isaac, P., Sánchez, L., Bourguignon, N., Eugenia Cabral, M. & Ferrero, M. (2013). Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. International Biodeterioration & Biodegradation, 82, 207-214.
Ismail, W., Alhamad, N. A., El-Sayed, W. S., El Nayal, A. M., Chiang, Y. R. & Hamzah, R. Y. (2013). Bacterial degradation of the saturate fraction of Arabian light crude oil: biosurfactant production and the effect of ZnO nanoparticles. Journal of Petroleum and Environmental Biotechnology, 4, 163-170.
James, G. (2010). Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene. In M., Schuller, T.P., Sloots, G.S., James, C.L., Halliday & I.W.J., Carter (Eds.), PCR for Clinical Microbiology, (pp. 209-214). Springer Netherlands.
Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, K., Nastis, A. & Tzafeiropoulou, K. (2008). Soil contamination by heavy metals: measurements from a closed unlined landfill. Bioresource Technology, 99(18), 8578-8584.
Kumari, B., Singh, S. N. & Singh, D. P. (2012). Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochemistry, 47(12), 2463-2471.
Maneerat, S. & Kulnaree, P. (2007). Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Applied Microbiology, 29, 783–791.
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment International, 37(8), 1362-1375.
Paul, E. A. & Clark, F. E. (1996). Soil Microbiology and Biochemistry. 2nd ed. Academic Press. London. 63 pp.
Pruthi, V. & Cameotra, S. S. (1997). Rapid identification of biosurfactant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnology Techniques, 11(9), 671-674.
Romina, L., Ruberto, L., Hernández, E., Vázquez, S., Alfredo, B., Del Panno, M. & Cormack , M. (2012). Bioremediation of an aged diesel oil-contaminated Antarctic soil: Evaluation of the on site biostimulation strategy using different nutrient sources. International Biodeterioration & Biodegradation, 75, 96-103.
Roy, A. S., Baruah, R., Borah, M., Singh, A. K., Deka Boruah, H. P., Saikia, N., Deka, M., Dutta, N. & Chandra Bora, T. (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. International Biodeterioration & Biodegradation, 94, 79-89.
Salam, L., Obayori, O. & Olatoye, N. (2014). Biodegradation of anthracene by a novel actinomycete, Microbacterium sp. isolated from tropical hydrocarbon-contaminated soil. World Journal of Microbiology and Biotechnology, 30(1), 335-341.
Schwab, J., Wetze, L. & Bank, S. M. (1990). Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environmental Science & Technology, 33, 1940-1945.
Soil and Plant Analysis Council. (1999). Soil Analysis Handbook of Reference Methods. CRC Press, Boca Raton, USA. 264 pp.
Soleimani, M., Afyuni, M., Hajabbasi, M. A., Nourbakhsh, F., Sabzalian, M. R. & Christensen, J. H. (2010). Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9), 1084-1090.
Soleimani, M., Farhoudi, M. & Christensen, J. H. (2013). Chemometric assessment of enhanced bioremediation of oil contaminated soils. Journal of Hazardous Material, 254-255, 372-381.
Tao, K., Liu, X., Chen, X., Hu, X., Cao, L. & Yuan, X. (2017). Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresource Technology, 224, 327-332.
Tremblay, J., Yergeau, E., Fortin, N., Cobanli, S., Elias, M. & King, T. L. (2017). Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria. ISME Journal, 11, 2793-2808.
Wang, C., Liu, X., Guo, J., Lv, Y. & Li, Y. (2018). Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China. Ecotoxicology & Environmental  Safety, 159, 20-27.
Wang, H., Xu, R., Li, F., Qiao, J. & Zhang, B. (2010). Efficient degradation of lube oil by a mixed bacterial consortium. Journal of  Environmental Science, 22(3), 381-388.
Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in Microbiology, 9, 2885.

تحت نظارت وف ایرانی